Evaluating the ability of Bayesian clustering methods to detect hybridization and introgression using an empirical red wolf data set.

نویسندگان

  • Justin H Bohling
  • Jennifer R Adams
  • Lisette P Waits
چکیده

Bayesian clustering methods have emerged as a popular tool for assessing hybridization using genetic markers. Simulation studies have shown these methods perform well under certain conditions; however, these methods have not been evaluated using empirical data sets with individuals of known ancestry. We evaluated the performance of two clustering programs, baps and structure, with genetic data from a reintroduced red wolf (Canis rufus) population in North Carolina, USA. Red wolves hybridize with coyotes (C. latrans), and a single hybridization event resulted in introgression of coyote genes into the red wolf population. A detailed pedigree has been reconstructed for the wild red wolf population that includes individuals of 50-100% red wolf ancestry, providing an ideal case study for evaluating the ability of these methods to estimate admixture. Using 17 microsatellite loci, we tested the programs using different training set compositions and varying numbers of loci. structure was more likely than baps to detect an admixed genotype and correctly estimate an individual's true ancestry composition. However, structure was more likely to misclassify a pure individual as a hybrid. Both programs were outperformed by a maximum-likelihood-based test designed specifically for this system, which never misclassified a hybrid (50-75% red wolf) as a red wolf or vice versa. Training set composition and the number of loci both had an impact on accuracy but their relative importance varied depending on the program. Our findings demonstrate the importance of evaluating methods used for detecting admixture in the context of endangered species management.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

A Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves

Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis.

Occasional crossbreeding between free-ranging domestic dogs and wild wolves (Canis lupus) has been detected in some European countries by mitochondrial DNA sequencing and genotyping unlinked microsatellite loci. Maternal and unlinked genomic markers, however, might underestimate the extent of introgressive hybridization, and their impacts on the preservation of wild wolf gene pools. In this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2013